Combinatorics

B. Math. III
Mid-Term Examination

Instructions: All questions carry ten marks.

1. Let α, β be two real numbers. Determine when a square matrix whose diagonal entries are α and off-diagonal entries are β is invertible.
2. Let X be the set of points of a $2-\left(n^{2}+n+1, n+1,1\right)$ design D. Let B be a block of D. Prove that the induced design on $X \backslash B$ is a $2-\left(n^{2}, n, 1\right)$ design.
3. Let \mathcal{O} be a suset of points of a projective plane of order n whose no three points are collinear. Prove that \mathcal{O} contains at most $n+2$ points and equality can hold only when n is an even number.
4. Let L be a Latin square of order k. Determine all numbers n such that L is a subsquare of a Latin square of order n.
